Energy Performance Certificate

22a, Back Lane, WYMONDHAM, NR18 0LA

Dwelling type:	Detached house		
Date of assessment:	fassessment: 10 February 2015		
Date of certificate:	10	February	2015

Reference number: Type of assessment: Total floor area: 8965-7132-3450-7390-0996 SAP, new dwelling 75 m²

Use this document to:

- Compare current ratings of properties to see which properties are more energy efficient
- Find out how you can save energy and money by installing improvement measures

Estimated energy costs of dwelling for 3 years:			£ 1,326		
Over 3 years you could save			£ 108		
Estimated energy costs of this home					
	Current costs	Potential costs	Potential future savings		
Lighting	£ 144 over 3 years	£ 144 over 3 years			
Heating	£ 882 over 3 years	£ 882 over 3 years	You could		
Hot Water	£ 300 over 3 years	save £ 108			
Totals	£ 1,326	£ 1,218	over 3 years		

These figures show how much the average household would spend in this property for heating, lighting and hot water. This excludes energy use for running appliances like TVs, computers and cookers, and any electricity generated by microgeneration.

Current Potential

Energy Efficiency Rating

Very energy efficient - lower running costs

The graph shows the current energy efficiency of your home.

The higher the rating the lower your fuel bills are likely to be.

The potential rating shows the effect of undertaking the recommendations on page 3.

The average energy efficiency rating for a dwelling in England and Wales is band D (rating 60).

Actions you can take to save money and make your home more efficient

Recommended measures	Indicative cost	Typical savings over 3 years
1 Solar water heating	£4,000 - £6,000	£ 108
2 Solar photovoltaic panels, 2.5 kWp	£5,000 - £8,000	£ 807

Summary of this home's energy performance related features

Element	Description	Energy Efficiency
Walls	Average thermal transmittance 0.22 W/m²K	****
Roof	Average thermal transmittance 0.13 W/m²K	****
Floor	Average thermal transmittance 0.16 W/m²K	****
Windows	High performance glazing	****
Main heating	Boiler and radiators, mains gas	★★★☆
Main heating controls	Time and temperature zone control	****
Secondary heating	Room heaters, wood logs	—
Hot water	From main system	★★★★☆
Lighting	Low energy lighting in all fixed outlets	****
Air tightness	Air permeability 2.1 m³/h.m² (as tested)	****

Thermal transmittance is a measure of the rate of heat loss through a building element; the lower the value the better the energy performance.

Air permeability is a measure of the air tightness of a building; the lower the value the better the air tightness.

Current primary energy use per square metre of floor area: 121 kWh/m² per year

Low and zero carbon energy sources

Low and zero carbon energy sources are sources of energy that release either very little or no carbon dioxide into the atmosphere when they are used. Installing these sources may help reduce energy bills as well as cutting carbon. The following low or zero carbon energy sources are provided for this home:

Biomass secondary heating

22a, Back Lane, WYMONDHAM, NR18 0LA 10 February 2015 RRN: 8965-7132-3450-7390-0996

Recommendations

The measures below will improve the energy performance of your dwelling. The performance ratings after improvements listed below are cumulative; that is, they assume the improvements have been installed in the order that they appear in the table. Further information about the recommended measures and other simple actions you could take today to save money is available at **www.direct.gov.uk/savingenergy**. Before installing measures, you should make sure you have secured the appropriate permissions, where necessary. Such permissions might include permission from your landlord (if you are a tenant) or approval under Building Regulations for certain types of work.

Recommended measures	Indicative cost	Typical savings per year	Rating after improvement
Solar water heating	£4,000 - £6,000	£ 36	B81
Solar photovoltaic panels, 2.5 kWp	£5,000 - £8,000	£ 269	A93

22a, Back Lane, WYMONDHAM, NR18 0LA 10 February 2015 RRN: 8965-7132-3450-7390-0996

About this document

The Energy Performance Certificate for this dwelling was produced following an energy assessment undertaken by a qualified assessor, accredited by NES. You can get contact details of the accreditation scheme at www.nesltd.co.uk, together with details of their procedures for confirming authenticity of a certificate and for making a complaint. A copy of this EPC has been lodged on a national register. It will be publicly available and some of the underlying data may be shared with others for compliance and marketing of relevant energy efficiency information. The Government may use some of this data for research or statistical purposes. Green Deal financial details that are obtained by the Government for these purposes will <u>not</u> be disclosed to non-authorised recipients. The current property owner and/or tenant may opt out of having their information shared for marketing purposes.

Assessor's accreditation number:	NHER003522
Assessor's name:	Mr Michael Gilbert
Phone number:	01493 377919
E-mail address:	mikegilbertservices@me.com
Related party disclosure:	No related party

Further information about Energy Performance Certificates can be found under Frequently Asked Questions at **www.epcregister.com**.

About the impact of buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions.

The average household causes about 6 tonnes of carbon dioxide every year. Based on this assessment, your home currently produces approximately 1.5 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. If you were to install these recommendations you could reduce this amount by 1.1 tonnes per year. You could reduce emissions even more by switching to renewable energy sources.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO_2) emissions. The higher the rating the less impact it has on the environment.

Your home's heat demand

This table shows the energy used for space and water heating by an average household in this property.

Heat demand

Space heating (kWh per year)	3,545
Water heating (kWh per year)	2,017

This submission provides evidence of compliance with the Building Regulations. It has been carried out by an Authorised SAP Assessor and can be accepted for Building Control purposes without further checking.

Assessment details

Authorised SAP assessor	Mr Michael Gilbert
Assessor number	3522
Membership number	N/A
Company name	N/A
Date of issue	10/02/2015

As built submission for

Address 22A BACK LANE WYMONDHAM WYMONDHAM NORFOLK NR18 OLA

National Energy Services operates the NHER, which is a quality assured scheme compliant with the Communities and Local Government (CLG) requirements for Authorised SAP Assessors. NES is a supplier of SAP software that has been approved by CLG, the Department of Energy and Climate Change (DECC), the Scottish Government, the Welsh Assembly Government and the Northern Ireland Department of Finance and Personnel.

L1A 2010 - Regulations Compliance Report As Built - Final

This as built final submission provides evidence towards compliance with Part L of the Building Regulations, in accordance with Appendix A of AD L1A. It has been carried out by an On-Construction Domestic Energy Assessor and can be accepted for building control purposes without further checking. The assessor has confirmed any changes from the design submission with the builder. This report covers only items included within the SAP and is not a complete report of regulations compliance.

Assessor name	Ar Michael Gilbert			Assessor number	3522	
lient				Last modified	10/02/2015	
ddress 2	22A BACK LANE, WYM	ONDHAM, WYMONE	DHAM, NORFOLK, NR18 0	A		
Check	Evidence			Produced	d by	OK?
Criterion 1: predicted carbo	on dioxide emission fi	rom proposed dwelli	ng does not exceed the ta	rget		
TER (kg CO ₂ /m ² .a)	Fuel = Mains Fuel factor = TER = 20.72			Authorise	ed SAP Assessor	
DER for dwelling as designed $CO_2/m^2.a$)	ed (kg DER = 20.59			Authorise	ed SAP Assessor	
Are emissions from dwellin built less than or equal to t target?	-	TER 20.72		Authorise	ed SAP Assessor	Passed
Criterion 2: the performance	ce of the building fab	ric and the heating, h	ot water and fixed lightin	g systems should be no wors	e than the design	limits
Fabric U-values						
Are all U-values better than design limits in Table 2?	n the Element Wall Party wall Floor Roof Openings	Weighted averag 0.22 (max 0.30) (no party wall) 0.16 (max 0.25) 0.13 (max 0.20) 1.59 (max 2.00)	e Highest 0.25 (max 0.70) 0.17 (max 0.70) 0.16 (max 0.35) 1.60 (max 3.30)	Authoris	ed SAP Assessor	Passed
Thermal bridging						
How has the loss from ther bridges been calculated?	rmal Thermal brid reference: av		user-specified y-value of	0.127, with Authorise	ed SAP Assessor	
Heating and hot water sys	tems					
Does the efficiency of the h systems meet the minimur set out in the Domestic He Compliance Guide?	n value Mains gas, Co ating Viessmann V Efficiency = 8 Minimum = 8 Secondary he	ombi boiler from data itodens 100 W WB1E 19.00% - SEDBUK 200 88.00% eating system: rs - Wood logs heater 15.00%	3 26kW Combi Boiler	Authoris	ed SAP Assessor	Passed
Does the insulation of the I water cylinder meet the sta set out in the Domestic He Compliance Guide?	andards	r cylinder		Authoris	ed SAP Assessor	
Do controls meet the minir controls provision set out i Domestic Heating Complian Guide?	n the Time and ten nce Hot water co No hot water	nperature zone contr ntrol: r cylinder ick (main system 1)	ol	Authorise	ed SAP Assessor	Passed
BSI			PRRN:		URN: 557	13 vorci

Check	Evidence	Produced by	OK?
Fixed internal lighting			
Does fixed internal lighting comply with paragraphs 42 to 44?	y Schedule of installed fixed internal lighting Standard lights = 0 Low energy lights = 19 Percentage of low energy lights = 100 % Minimum = 75 %	Authorised SAP Assessor	Passed
Criterion 3: the dwelling has appro	opriate passive control measures to limit solar gains		
Does the dwelling have a strong tendency to high summertime temperatures?	Overheating risk (June) = Not significant Overheating risk (July) = Slight Overheating risk (August) = Slight Region = East Anglia Thermal mass parameter = 250.00 Ventilation rate in hot weather = 4.00 ach Blinds/curtains = None	Authorised SAP Assessor	Passed
Criterion 4: the performance of th	e dwelling, as built, is consistent with the DER		
Design air permeability (m³/(h.m²) at 50Pa)	Design air permeability = 4.00 Max air permeability = 10.00 As built air permeability = 2.14	Authorised SAP Assessor	Passed
Mechanical ventilation system Specific fan power (SFP)	Not applicable	Authorised SAP Assessor	
Have the key features of the design been included (or bettered in practice?	The following walls/wall have a U-value less than 0.2W/m ² K: • STUD (0.12) The following floors/floor have a U-value less than 0.2W/m ² K: • Floor 1 (0.17) • Floor 2 (0.14) The following roofs/roof have a U-value less than 0.13W/m ² K: • FLAT (0.11) • CIELING TO VOIDS (0.12) The following openings have a U-value less than 1.5W/m ² K: • Rooflight reference 1 (1.40) As built air permeability of 2.14 m ³ /(h.m ²) is less than 5 m ³ /(h.m ²) at 50 Pa Secondary heating system present - Wood logs Use of the following low carbon or renewable technologies: • Wood logs used for secondary heating	Authorised SAP Assessor	

Page 2 of 2

Data Input Report As Built - Final

This as built submission has been carried out by an On-Construction Domestic Energy Assessor. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Michael Gilbert	Assessor number	3522
Client		Last modified	10/02/2015
Address	22A BACK LANE, WYMONDHAM, WYMONDHAM, NORFOLK, NR18 OLA		

Dwelling							
Development:			House type:				
Property type:	House						
Built form:	Detached		Year built:		2013		
Tariff:	Standard		Assess summer	overheating:	Yes		
Thermal mass:	Medium		Thermal mass pa	arameter:	250.00		
Separated heated conserva	atory: No		Degree day regi	on:	East Angli	а	
Sheltered sides:	4		Terrain:		Low Rise	U/S	
Storeys:							
Name	Area (m²)		Height (m)				
Lowest occupied	34.18		2.40				
+1	40.43		2.40				
Floors							
Ref - Name	Туре	Construction		Storey Location	Living Area (m²)	Area (m²)	U-value (W/m²K)
Floor 1 - Floor 1	Ground	Solid		Lowest occupied	25.60	34.18	0.17
Floor 2 - Floor 2	Upper	Suspended tim	nber sealed	+1	0.00	10.92	0.14
Living area that has no hea	t loss: 0.00						
Walls							
Ref - Name	Туре	Construction				Gross	U-value
Kei - Name	Type	construction				Area (m ²)	(W/m²K)
Wall 1 - EXTERNAL BRICK	External	Cavity				70.59	0.25
Wall 2 - GARAGE WALL	Sheltered	Cavity				13.44	0.20
Wall 3 - DORMER	External	Timber				5.48	0.20
Wall 4 - STUD	Sheltered	Timber				13.91	0.20
Roofs						13.31	0.12
Ref - Name		Construction				Gross	U-value
						Area (m²)	(W/m²K)
Roof 1 - FLAT		Pitched (joists))			25.74	0.11
Roof 2 - SLOPING		Pitched (rafter	s)			19.16	0.16
Roof 3 - CIELING TO VOIDS		Pitched (joists))			7.08	0.12
Openings							
Opening Ref: 1 Rooflight,	Double glazed (low-E),	' VELUX', master: No, linke	ed to: 0				
	Roof 2	Source:	From Manufactu	urer Orientatio	n:	East	
Overshading:	None / Very little	Width (m):	0.60	Height (m)		1.20	
-	Wood	Transmittance factor:	0.63	U-value (V		1.40	

Frame:	Wood	Transmittance factor:	0.63	U-value (W/m ² K):	1.40
Opening Ref: 2 Window,	, Double glazed (low-E), '	window', master: Yes, link	ed to: 0		
Location:	Wall 1	Source:	From Manufacturer	Orientation:	West
Overshading:	Average / Unknown	Width (m):	1.80	Height (m):	2.10
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W/m ² K):	1.60

Opening Ref: 3 Window,	, Double glazed (low-E), '	window', master: No, linl	ked to: 2			
Location:	Wall 1	Source:	From Manufacturer	Orientatior	: West	
Overshading:	Average / Unknown	Width (m):	1.80	Height (m):	1.35	
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W		
Opening Ref: 4 Window	, Double glazed (low-E), '	window'. master: No. link	ced to: 2			
Location:	Wall 1	Source:	From Manufacturer	Orientatior	n: West	
Overshading:	Average / Unknown	Width (m):	1.00	Height (m):		
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W		
				0 Talac (11	,	
	, Double glazed (low-E), '					
Location:	Wall 3	Source:	From Manufacturer	Orientatior		
Overshading:	Average / Unknown	Width (m):	1.20	Height (m):		
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W	/m²K): 1.60	
Opening Ref: 6 Window,	, Double glazed (low-E), '		ked to: 2			
Location:	Wall 3	Source:	From Manufacturer	Orientatior		
Overshading:	Average / Unknown	Width (m):	1.20	Height (m):		
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W	/m²K): 1.60	
Opening Ref: 7 Window,	, Double glazed (low-E), '	window', master: No, link	ked to: 2			
Location:	Wall 1	Source:	From Manufacturer	Orientation	n: South	
Overshading:	Average / Unknown	Width (m):	1.20	Height (m):	1.35	
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W	/m²K): 1.60	
Opening Ref: 8 Window,	, Double glazed (low-E), '	window', master: No, link	red to: 2			
Location:	Wall 1	Source:	From Manufacturer	Orientatior	a: East	
Overshading:	Average / Unknown	Width (m):	1.40	Height (m):	2.10	
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W		
Opening Ref: 9 Window,	, Double glazed (low-E), '	window'. master: No. link	ced to: 2			
Location:	Wall 1	Source:	From Manufacturer	Orientatior	a: East	
Overshading:	Average / Unknown	Width (m):	1.20	Height (m):		
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W		
Opening Ref: 10 Windov	v, Double glazed (low-E),	' window'. master: No. lir	nked to: 2			
Location:	Wall 1	Source:	From Manufacturer	Orientatior	a: East	
Overshading:	Average / Unknown	Width (m):	1.20	Height (m):		
Frame:	u-PVC	Transmittance factor:	0.63	U-value (W		
	· Double glazed (low E)	unindouri mostori No lir	lead to 2	,		
	v, Double glazed (low-E), Wall 1		From Manufacturer	Orientation	La Fact	
Location:	Average / Unknown	Source: Width (m):	0.90	Orientatior Height (m):		
Overshading: Frame:	u-PVC	Transmittance factor:	0.63	U-value (W		
	u-r ve	Hansmittance factor.	0.05	0-value (w	/шкј. 1.00	
Ventilation	N.				N	
Air permeability entered			Seek exemption (<3 dv	venings):	No	
Design air permeability r					Ma a	
Measured air permeabili	•		Measured in this dwel	-	Yes	
As-built air permeability	rate: 2.14		As-built air permeabili	ty reference:	2012022739	
Number of	Open fireplace	s Open flues	Flueless gas fires	Extract fans	Passive vents	
	0	1	0	3	0	
Mechanical ventilation:	Not present		0	5	Ū	
	not present					
Space heating	Individual a	ustom (s	Number of systems		1	
Main heating category:	Individual s	ystelliys	Number of systems:		1 No	
Secondary heating:	Yes		Smoke control area:		No Draduct detabase	
Type:	Boiler		Efficiency source:		Product database	
Product index:	015977	Mite days 400 Mite 77 77				
Product details:		Vitodens 100 W WB1B 26				
Boiler type:	Combi		Fuel:		Mains gas	
Condensing:	Yes		Flue type:		Balanced	
		D	RRN:		URN: 557-13 ver	sic
					0	

Fan assisted flue:	Yes		
Combi type:	Keep hot	Uses electricity:	No
Keep hot power rating:	N/A		
System:	Condensing combi with automatic ign	ition (1998 or later)	
Controls:	Time and temperature zone control		
Interlock:	Yes	Delayed start thermostat:	Yes
Compensation:	Weather compensator	Burner control:	N/A
Emitter:	Radiators	Pump in heated space:	Yes
FGHRS:	No		
Secondary heating:			
Efficiency source:	SAP table	Fuel:	Wood logs
System:	Closed room heater		
Flue type:	Open		
HETAS approved:	Yes	Efficiency:	65.00
Water heating			
Туре:	From main	Fuel:	Mains gas
Water separately timed:	Yes	Water use ≤125 litres/person/day:	Yes
Heat pump uses immersion:	N/A	Summer immersion:	N/A
Thermal store type:	N/A		
Store details:			
Cylinder volume (litres):	N/A		
Thermostat:	N/A	In heated space:	N/A
Primary pipework insulated:	N/A		
WWHRS:			
WWHRS:	N/A		
	177		
Renewables			
No renewables present			
Other			
Thermal Bridging			
Thermal bridge specification:	Enter y value	y-value:	0.13
y-value description:	average calc		
Internal lighting			
Standard fittings: 0	Low energy fittings:	19 Total fitting	gs: 19
Summer overheating			
Thermal mass parameter (TMP):	250.00		
User defined air change rate:	No	Air change rate (ach):	N/A
Cross ventilation on most floors:	Yes	Window ventilation:	Fully open half the time
Source of user defined values:	N/A		
Curtains closed in daylight hours:	No	Fraction curtains closed:	N/A
Blind/curtain type:	N/A		
Special features (Appendix Q)			
No Appendix Q special features prese	nt		
Cooling datation			

Cooling details

No space cooling present

SAP 2009 Worksheet

As Built - Final

This as built submission has been carried out by an On-Construction Domestic Energy Assessor. The assessor has confirmed any changes from the design submission with the builder.

Assessor name	Mr Michael Gilbert	Assessor number	3522
Client		Last modified	10/02/2015
Address	22A BACK LANE, WYMONDHAM, WYMONDHAM, NORFOLK, NR18 OLA		

1. Overall dwelling dimensions											
			A	rea (m²)			erage storey eight (m)		v	olume (m³)	
Lowest occupied				34.18	(1a) x		2.40	(2a) =		82.03	(3a)
+1				40.43	(1b) x		2.40	(2b) =		97.03	(3b)
Total floor area	(1a) + (1b) + (1c)	+ (1d)(1	Ln) =	74.61	(4)						
Dwelling volume						(3a) + (3b) + (3	c) + (3d)(3	3n) =	179.06	(5)
2. Ventilation rate										3	
										n ³ per hour	
Number of chimneys							0	x 40 =		0	(6a)
Number of open flues							1	x 20 =		20	(6b)
Number of intermittent fans							3	x 10 =		30	_ (7a)
Number of passive vents							0	x 10 =		0	_ (7b)
Number of flueless gas fires							0	x 40 =	L	0	(7c)
									Air	changes pe hour	r
Infiltration due to chimneys, flues,	fans, PSVs		(6a)	+ (6b) + (7a) + (7b) + (7c) =	50] ÷ (5) =	-	0.28	(8)
If a pressurisation test has been ca	rried out or is inte	nded, pro	ceed to (17), otherwise	continue	from (9) to	o (16)				
Air permeability value, q50, expres	sed in cubic metro	es per hou	ır per squa	re metre of	envelope	area				2.14	(17)
If based on air permeability value,	then (18) = [(17) ÷	20] + (8),	otherwise	(18) = (16)						0.39	(18)
Air permeability value applies if a p	pressurisation test	has been	done, or a	design or sp	ecified air	permeabi	lity is being	used			
Number of sides on which dwelling	g is sheltered									4	(19)
Shelter factor							1 -	[0.075 x (1	9)] =	0.70	(20)
Adjusted infiltration rate								(18) x (2	20) =	0.27	(21)
Infiltration rate modified for mont	hly wind speed:										
	eb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Monthly average wind speed from(22)m5.405.405.	Table 7 10 5.10	4.50	4.10	3.90	3.70	3.70	4.20	4.50	4.80	5.10	٦
(22)111 5.40 5.	10 5.10	4.50	4.10	3.90	5.70	5.70	4.20	∑(22)1	·	54.10	_] (22)
Wind Factor (22a)m = (22)m ÷ 4								2(22)1	.12	54.10	_ (22)
	27 1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.20	1.27	٦
	/		1.02	5.55	5.52	0.52	1.00	∑(22a)1	·	13.52] (22a)
Adjusted infiltration rate (allowing	for shelter and w	ind speed) = (21) × (2	2a)m				,	L		_ · ~ ^1
	34 0.34	0.30	0.28	0.26	0.25	0.25	0.28	0.30	0.32	0.34]
	.							∑(22b)1	.12 =	3.66	(22b)
Calculate effective air change rate	for the applicable	case:									
If mechanical ventilation: air ch	ange rate through	system								N/A	(23a)

Hot water usage in litres per day for		-					-~0	JCh	000	1104	Det	
Jan Feb	Mar	Apr	May	Jun	Ju	ul ∆	lug	Sep	Oct	Nov	Dec	
per person per day (all water use, hot		, <i></i> ,		- acoigned			450	get 0j				
Annual average hot water usage has		-			to arl	hieve a wa	ter 1154	e taraet of	L			
Annual average hot water usage in lit	res per dav Vd	average =	(25 x N) + '	36					90.0)8 (43	;)	
If TFA ≤ 13.9, N = 1				. –	,							
If TFA > 13.9, N = 1 + 1.76 x [1 - ex	p(-0.000349 x (TFA - 13.9)²)] + 0.001	.3 x (TFA - 1	3.9)				·			
Assumed occupancy, N									2.3	5 (42	!)	
										k	Wh/year	
4. Water heating energy requireme	nt											
								Average =	2(40)11	2/12 =	1.61	(40)
(40)m 1.63 1.62	1.62	1.61	1.61	1.60	1.	60 1	.60	1.61	1.61	1.62	1.62	
Heat loss parameter (HLP), W/m ² K (1.64	1.00	4.00	-	<u> </u>	<u> </u>	4.64	4.04	4.00	1.02	7
								Average =	∑(39)11	2/12 =	120.27	(39)
(39)m 121.42 120.9	9 120.99	120.22	119.75	119.54	119	9.33 11	9.33	119.87	120.22	120.59	120.99]
Heat transfer coefficient, W/K (37)m												-
(38)m 33.48 33.06		32.28	31.81	31.60	31	.39 31	1.39	31.93	32.28	32.66	33.06	(38)
Ventilation heat loss calculated mont	hly 0.33 x (25)	m x (5)									_	_
Total fabric heat loss									(33) +	(36) =	87.94	(37)
if details of thermal bridging are r	ot known then	(36) = 0.15	5 x (31)									_
Thermal bridges: $\Sigma(L \times \Psi)$ calculated	using Appendix	К									25.46	(36)
Thermal mass parameter (TMP) in kJ,	/m²K							Calcula	ted separa	ately =	250.00	(35)
Heat capacity Cm = ∑(А x к)							(28)	(30) + (32)	+ (32a)(32e) =	N/A	(34)
Fabric heat loss, W/K = $\Sigma(A \times U)$									6)(30) +		62.47	(33)
* for windows and roof windows, effe	ective window L	J-value is c	alculated (using formu	la 1/[(1/UValue	2)+0.04					_
Total area of external elements ∑A, n				200.50	(31)							
Roof				7.08	х	0.12	=	0.85		N/A	N/A	(30)
Roof				18.44	х	0.16	_ =	2.95		N/A	N/A	(30)
Roof				25.74	х	0.11	_ =	2.83		N/A	N/A	(30)
External wall				13.91	х	0.12	_ =	1.67		N/A	N/A	(29a)
External wall				16.40	х	0.20	_ =	3.28		N/A	N/A	(29a)
External wall				53.71	х	0.25	_ = _	13.43		N/A	N/A	(29a)
Exposed floor				10.92	х	0.14	_ = _	1.53	-	N/A	N/A	_ (28b)
Ground floor				34.18	х	0.17	_ = _	5.81		N/A	N/A	(28a)
Window*				19.40	х	1.50	_ = _	29.17		N/A	N/A	(27)
Roof window*				0.72	х	1.33	_ =	0.95		N/A	N/A	(27a)
	Area, m²	m	-	A, m²		W/m²K	-	W/K	kJ,	/m².K	kJ/K	-
Element	Gross	Open	ings.	Net area		U-value,		ΑxU,	к-\	value,	Ахк,	
The κ -value is the heat capacity per u		hle 1e										
3. Heat losses and heat loss parame	ater											
(25)m 0.57 0.56	0.56	0.55	0.54	0.53	0.	53 0	.53	0.54	0.55	0.55	0.56	(25)
Effective air change rate - enter (24a)	or (24b) or (24	c) or (24d)	in box (25	5)								_
(24d)m 0.57 0.56		0.55	0.54	0.53	0.	53 0	.53	0.54	0.55	0.55	0.56	(24d)
if (22b)m \geq 1, then (24d)m = (2	•	•										
d) If natural ventilation or whole h	nouse positive i	nput venti	lation from	n loft								
If balanced with heat recovery: ef							,	,			N/A N/A	(230)

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

N/A

(23b)

(44)m	99.08	95.48	91.88	88.27	84.67	81.07	81.07	84.67	88.27	91.88	95.48	99.08]
		•						•		<u>Σ</u> (44)1	.12 = 1	080.91	(44)
Energy content of	hot water	used - calcu	lated mon	thly = 4 190	xVd m x n	m x Tm/36	00 kWh/i	month (see	Tables 1h], ,
(45)m	147.29	128.82	132.93	115.89	111.20	95.96	88.92	102.04	103.25	120.33	131.35	142.64	1
(45)	147.23	120.02	132.95	115.85	111.20	33.30	88.92	102.04	105.25		·		
										∑(45)1	.12 = 1	420.63	(45)
If instantaneous w			-					51)					
For community he	ating inclu	de distributi	ion loss wh	ether or no	t hot water	tank is pre	sent						
Distribution loss ().15 x (45)n	า											_
(46)m	22.09	19.32	19.94	17.38	16.68	14.39	13.34	15.31	15.49	18.05	19.70	21.40	(46)
Water storage los	s:												
Cylinder volum	e (litres) in	cluding any	solar stora	age within s	ame cylind	er			0	(50)			
Energy lost fro	m water ste	orage, kWl	h/day (50)) x (51) x (52	2) x (53)				0.00	(54)			
Enter (49) or (54) i		0							0.00	(55)			
		l for oach m	onth - (EE	$\lambda x (41)m$					0.00] (33)			
Water storage los		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(56)
(56)m											0.00	0.00] (50)
If cylinder contain	-	1					I						1
(57)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(57)
Primary circuit los	s (annual) f	rom Table 3	3						0.00	(58)			
Primary circuit los	s for each r	nonth (58)	÷ 365 × (41	.)m									
(modified by facto	or from Tab	le H5 if thei	re is solar v	vater heatir	ng and a cyl	inder therr	nostat)						
(59)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59)
Combi loss for eac	h month fr	om Table 3	a, 3b or 3c	(enter '0' if	not a com	oi boiler)							
(61)m	50.96	46.03	50.96	49.32	50.96	49.32	50.96	50.96	49.32	50.96	49.32	50.96	(61)
Total heat require	d for water	heating ca	lculated fo	r each mon	th 0.85 × (4	5)m + (46)	m + (57)m ·	+ (59)m + (6	51)m				-
(62)m	198.25	174.85	183.89	165.21	162.16	145.27	139.88	153.00	, 152.57	171.29	180.67	193.60	(62)
Solar DHW input o											1], ,
(63)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1
(00)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		·	0.00	
		_								∑(63)1	.12 =	0.00	(63)
Output from wate									-		1		1
(64)m	198.25	174.85	183.89	165.21	162.16	145.27	139.88	153.00	152.57	171.29	180.67	193.60]
										∑(64)1	.12 = 2	020.63	(64)
if (64)m < 0 then s	et to 0												
Heat gains from w	ater heatin	g, kWh/mo	onth 0.25 ×	[0.85 × (45)m + (61)m] + 0.8 × [(4	46)m + (57)	m + (59)m]					
(65)m	61.71	54.34	56.94	50.86	49.71	44.23	42.31	46.67	46.66	52.75	56.00	60.17	(65)
include (57)	m in calcul	ation of (65)m only if a	cylinder is ir	the dwelli	ng or hot w	vater is from	n communi	ty heating				
				-		-	-						
5. Internal gains	(see Table	5 and 5a)											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (T			Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Metabolic gains (T (66)m			Mar 141.16	Apr 141.16	May 141.16	Jun 141.16	Jul 141.16	Aug 141.16	Sep 141.16	Oct 141.16	Nov	Dec	(66)
(66)m	able 5), Wa 141.16	atts 141.16	141.16	141.16	141.16	141.16		-		i	i] (66)
(66)m Lighting gains (cal	able 5), Wa 141.16 culated in A	atts 141.16 Appendix L,	141.16 equation L	141.16 9 or L9a), a	141.16 lso see Tab	141.16 le 5	141.16	141.16	141.16	141.16	141.16	141.16	1
(66)m Lighting gains (cale (67)m	Table 5), Wa 141.16 culated in A 46.32	atts 141.16 Appendix L, 41.14	141.16 equation L 33.46	141.16 9 or L9a), a 25.33	141.16 lso see Tab 18.93	141.16 le 5 15.98		-		i	i] (66)] (67)
(66)m Lighting gains (cale (67)m Appliances gains (able 5), Wa 141.16 culated in A 46.32 calculated i	atts 141.16 Appendix L, 41.14 In Appendix	141.16 equation L 33.46 t, equatio	141.16 9 or L9a), a 25.33 n L13 or L1	141.16 Iso see Tab 18.93 3a), also se	141.16 le 5 15.98 e Table 5	141.16	22.45	30.13	141.16 38.26	44.65	141.16 47.60] (67)
(66)m Lighting gains (cale (67)m Appliances gains ((68)m	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16	atts 141.16 Appendix L, 41.14 n Appendix 313.38	141.16 equation L 33.46 : L, equatio 305.27	141.16 9 or L9a), a 25.33 n L13 or L1 288.00	141.16 Iso see Tab 18.93 3a), also se 266.21	141.16 le 5 15.98 e Table 5 245.72	141.16	141.16	141.16	141.16	141.16	141.16	1
(66)m Lighting gains (cal (67)m Appliances gains ((68)m Cooking gains (cal	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16 culated in A	atts 141.16 xppendix L, 41.14 in Appendix 313.38 Appendix L,	141.16 equation L 33.46 : L, equatio 305.27 equation L	141.16 9 or L9a), a 25.33 n L13 or L1 288.00 15 or L15a)	141.16 lso see Tab 18.93 3a), also se 266.21 , also see T	141.16 le 5 15.98 e Table 5 245.72 able 5	141.16 17.27 232.04	141.16 22.45 228.82	141.16 30.13 236.93	141.16 38.26 254.20	141.16 44.65 275.99	141.16 47.60 296.48] (67)] (68)
 (66)m Lighting gains (cale (67)m Appliances gains (68)m Cooking gains (cale (69)m 	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16 culated in A 51.47	atts 141.16 Appendix L, 41.14 In Appendix 313.38 Appendix L, 51.47	141.16 equation L 33.46 : L, equatio 305.27	141.16 9 or L9a), a 25.33 n L13 or L1 288.00	141.16 Iso see Tab 18.93 3a), also se 266.21	141.16 le 5 15.98 e Table 5 245.72	141.16	22.45	30.13	141.16 38.26	44.65	141.16 47.60] (67)
(66)m Lighting gains (cal (67)m Appliances gains ((68)m Cooking gains (cal (69)m Pumps and fans ga	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16 culated in A 51.47 ains (Table	atts 141.16 Appendix L, 41.14 in Appendix 313.38 Appendix L, 51.47 5a	141.16 equation L 33.46 : L, equatio 305.27 equation L 51.47	141.16 9 or L9a), a 25.33 n L13 or L1 288.00 15 or L15a) 51.47	141.16 lso see Tab 18.93 3a), also se 266.21 , also see T 51.47	141.16 le 5 15.98 e Table 5 245.72 able 5 51.47	141.16 17.27 232.04 51.47	141.16 22.45 228.82 51.47	141.16 30.13 236.93 51.47	141.16 38.26 254.20 51.47	141.16 44.65 275.99 51.47	141.16 47.60 296.48 51.47] (67)] (68)] (69)
 (66)m Lighting gains (cale (67)m Appliances gains (68)m Cooking gains (cale (69)m 	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16 culated in A 51.47	atts 141.16 Appendix L, 41.14 In Appendix 313.38 Appendix L, 51.47	141.16 equation L 33.46 : L, equatio 305.27 equation L	141.16 9 or L9a), a 25.33 n L13 or L1 288.00 15 or L15a)	141.16 lso see Tab 18.93 3a), also se 266.21 , also see T	141.16 le 5 15.98 e Table 5 245.72 able 5	141.16 17.27 232.04	141.16 22.45 228.82	141.16 30.13 236.93	141.16 38.26 254.20	141.16 44.65 275.99	141.16 47.60 296.48] (67)] (68)
(66)m Lighting gains (cal (67)m Appliances gains ((68)m Cooking gains (cal (69)m Pumps and fans ga	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16 culated in A 51.47 ains (Table 10.00	atts 141.16 Appendix L, 41.14 n Appendix 313.38 Appendix L, 51.47 5a) 10.00	141.16 equation L 33.46 : L, equatio 305.27 equation L 51.47 10.00	141.16 9 or L9a), a 25.33 n L13 or L1 288.00 15 or L15a) 51.47	141.16 lso see Tab 18.93 3a), also se 266.21 , also see T 51.47	141.16 le 5 15.98 e Table 5 245.72 able 5 51.47	141.16 17.27 232.04 51.47	141.16 22.45 228.82 51.47	141.16 30.13 236.93 51.47	141.16 38.26 254.20 51.47	141.16 44.65 275.99 51.47	141.16 47.60 296.48 51.47] (67)] (68)] (69)
 (66)m Lighting gains (calcological) (67)m Appliances gains (calcological) (68)m Cooking gains (calcological) (69)m Pumps and fans gains (70)m 	Table 5), Wa 141.16 culated in A 46.32 calculated in 310.16 culated in A 51.47 ains (Table 10.00	atts 141.16 Appendix L, 41.14 n Appendix 313.38 Appendix L, 51.47 5a) 10.00	141.16 equation L 33.46 : L, equatio 305.27 equation L 51.47 10.00	141.16 9 or L9a), a 25.33 n L13 or L1 288.00 15 or L15a) 51.47	141.16 lso see Tab 18.93 3a), also se 266.21 , also see T 51.47	141.16 le 5 15.98 e Table 5 245.72 able 5 51.47	141.16 17.27 232.04 51.47	141.16 22.45 228.82 51.47	141.16 30.13 236.93 51.47	141.16 38.26 254.20 51.47	141.16 44.65 275.99 51.47	141.16 47.60 296.48 51.47] (67)] (68)] (69)

(72)m	82.95	80.86	76.53	70.64	66.82	61.44	56.86	62.72	64.81	70.90	77.78	80.87	(72)
Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m													
(73)m	547.95	543.90	523.78	492.50	460.48	431.67	414.69	422.52	440.39	471.88	506.95	533.47	(73)

6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

Details for month of January and annual totals are shown below:

	ļ	Access facto Table 6d	or	Area m ²	So	olar flux W/	m² i	g Specific da or Table 6b		FF Specific da or Table 6		Gains (W))
Rooflights		1.00] x	0.72] x	26.00	x 0.9 x	0.63	x	0.70] =	7.43	(82)
West		0.77] x	10.43] x	19.87	x 0.9 x	0.63	x	0.70] =	63.34	(80)
South		0.77] x	1.62] x	47.32	x 0.9 x	0.63	x	0.70] =	23.43	(78)
East		0.77] x	7.35	x	19.87	x 0.9 x	0.63	x	0.70] =	44.64	(76)
Solar gains in wat	tts, calculate	ed for each	month ∑(7	4)m(82)m	-								
(83)m	138.84	262.95	408.06	591.61	712.38	741.96	720.55	631.00	482.60	316.55	171.44	115.32	(83)
Total gains - inter	nal and sola	ar (73)m + (83)m										
(84)m	686.79	806.85	931.83	1084.11	1172.87	1173.62	1135.25	1053.51	922.99	788.43	678.39	648.79	(84)
7. Mean interna	-	-			bla 0 Th1/	°C)						21.00	
Temperature dur			_				1.1	A	Com	Oct	Nev	21.00	(85)
Utilisation factor	Jan for gains for	Feb	Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(86)m	0.99	0.98	0.95	0.90	0.77	0.60	0.42	0.45	0.74	0.93	0.98	0.99	(86)
Mean internal ter					0.77	0.00	0.42	0.45	0.74	0.55	0.50	0.55] (00)
(87)m	19.47	19.67	20.04	20.41	20.76	20.93	20.99	20.98	20.86	20.42	19.81	19.49	(87)
Temperature dur	_					1	20.00	10.00	20100		10101	20110	
(88)m	19.60	19.60	19.60	19.61	19.61	19.62	19.62	19.62	19.61	19.61	19.61	19.60	(88)
Utilisation factor] ()
(89)m	0.99	0.97	0.94	0.86	0.70	0.49	0.28	0.31	0.63	0.89	0.98	0.99	(89)
Mean internal ter] ()
(90)m	17.64	17.94	18.46	18.97	19.40	19.58	19.62	19.61	19.52	19.01	18.15	17.67	(90)
Living area fraction	on	1	1	1	1				25.60	÷ (4) :	=	0.34	(91)
Mean internal ter		or the who	le dwelling	fLA x T1 +(;	1 - fLA) x T2	2					L		
(92)m	18.26	18.53	19.00	19.46	19.87	20.04	20.09	20.08	19.98	19.49	18.72	18.29	(92)
Apply adjustment	t to the mea	an internal t	emperatur	re from Tab	le 4e, wher	re appropria	ite	-		-	•		
(93)m	18.11	18.38	18.85	19.31	19.72	19.89	19.94	19.93	19.83	19.34	18.57	18.14	(93)
		·	•		•	•		·		·	•	•	_
8. Space heating	g requireme	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Set Ti to the mea		•	obtained a	at step 11 o	f Table 9b,	so that tim	= (93)m a	ind recalcula	te the uti	lisation facto	or for gains	using Table	e 9a)
Utilisation factor	U 7 .	1	0.00	0.05	0.71	0.50	0.02	0.24	0.05	0.00	0.07	0.00	
(94)m	0.98	0.96	0.93	0.85	0.71	0.52	0.32	0.34	0.65	0.88	0.97	0.98	(94)
Useful gains, ηm(, ,	1		0.05 0.0	024.00	604.00	250.20	250.25	500.4.4	607.50	656.34	626.04	
(95)m	672.89	778.26	864.27	925.89	831.98	604.98	359.39	358.35	598.14	697.59	656.24	636.81	(95)
Monthly average		· · · · · · · · · · · · · · · · · · ·			11 70	14.00	16.00	16.00	14.20	10.00	7.00	4.00	
(96)m	4.50	5.00	6.80	8.70	11.70	14.60	16.90	16.90	14.30	10.80	7.00	4.90	(96)
Heat loss rate for	1653.06	nal tempera		1	060.42	622 70	262.20	262.00	662 54	1026.00	1205 12	1602.20	
(97)m Crease haating rea	L		1457.98	1276.08	960.43	632.70	362.29	362.08	662.51	1026.98	1395.12	1602.28	(97)
Space heating red (98)m	729.25	or each moi 565.01	nth, kWh/r 441.72	nonth = 0.0 252.13	24 x [(97)n 95.56	n - (95)m] x 0.00	(41)m 0.00	0.00	0.00	245.07	531.99	718.31	7
(90)111	129.25	10.001	441.72	252.13	02.56						·		
							i otal per	year (KWh/y	/ear) = ∑(98)15, 10	.12 = 3	3579.05	(98)

(99)

9a. Energy Requ	uirements -	Individual h	neating sys	tems incluc	ling micro-Cl	HP							
pace heating:													
raction of space	e heating fro	om secondai	ry/supplem	entary syst	em (Table 11	.)			0.10	(201)			
raction of space	e heating fro	om main sys	tem(s) 1 -	(201)					0.90	(202)			
raction of main	heating from	m main syst	em 2						0.00	(203)			
raction of total	-			02) x [1 - (2	03)]				0.90	(204)			
raction of total									0.00	(205)			
Efficiency of main									92.90	(206)			
from database o				oropriata h	, the amount	t chown in	tha 'space	L			Tabla Ac)		
ifficiency of seco		-							65.00	(208)	uble 40j		
inclency of sect	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
pace heating re					•	Juli	Jui	Aug	Seh	001	NUV	Dec	
(98)m	729.25	565.01	441.72	252.13	95.56	0.00	0.00	0.00	0.00	245.07	531.99	718.31	7
pace heating fu	L	1	1		11			0.00	0.00	243.07	551.55	/10.51	
(211)m	706.49	547.37	427.93	244.26	92.58	0.00	0.00	0.00	0.00	237.42	515.38	695.89	1
(211)	700.45	547.57	427.55	244.20	52.50				1	1 1		3467.32	」](21
				(201)	400 + (200)	'	otai per ye		201) - 2(21	1)15, 101	2 -	3407.32	_ (21
pace heating fu	112.19	ry), kwn/mo 86.92	67.96	m x (201) x 38.79	100÷(208) 14.70	0.00	0.00	0.00	0.00	37.70	81.84	110.51	7
(215)m	112.19	00.92	07.90	56.79	14.70					1			
						I	otal per ye	ear (kwn/ye	$ear) = \sum (21)$	5)15, 101	2 =	550.62	(21
Vater heating:													
Output from wat		1											7
(64)m	198.25	174.85	183.89	165.21	162.16	145.27	139.88	153.00	152.57	171.29	180.67	193.60	
										∑(64)11	.2 =	2020.63	(64
fficiency of wat		1											-
(217)m	87.34	87.08	86.44	85.35	83.03	79.80	79.80	79.80	79.80	85.19	86.89	87.35	
uel for water he	-	1	· ·	1 .	, <u> </u>			1	1	I I			7
(219)m	227.00	200.79	212.74	193.57	195.30	182.05	175.29	191.72	191.19	201.08	207.93	221.63	
							Tota	l per year (l	kWh/year)	= ∑(219)11	2 =	2400.28	(21
Innual Totals Su	ummary:									kWh/yea	nr k	Wh/year	
pace heating fu	iel used, ma	in system 1										3467.32	(21
pace heating fu	iel used, sec	ondary										550.62	(21
Vater heating fu	uel used											2400.28	(21
electricity for pu	ımps, fans a	nd electric	keep-hot (1	Table 4f):									
mechanical ve	entilation fa	ns - balance	ed, extract (or positive i	input from ou	utside				0.00			(23
warm air heat					-					0.00			(23
central heatir	ng pump									130.00			(23
oil boiler pum	пр									0.00			(23
boiler flue far	n									45.00			(23
maintaining e	electric keep	-hot facility	for gas cor	nbi boiler						0.00			(23
pump for sola	ar water hea	nting								0.00			(23
Total electricity f	for the abov	e								∑(230a)(23	0g)	175.00	(23
Electricity for lig	hting (calcu	lated in Ap	pendix L):									327.18	(23
10a. Fuel costs	- Individual	heating sys	tems inclu	ding micro-	СНР								
Tour ruercosts	marvidual	nearing sys	actins inclu	ang mero-		Wh/year		Fu	uel price		Fuel	cost £/yea	r
									able 12)			.,	

107.49

(240)

Page 5

х

3467.32

3.10

x 0.01 =

						_
Space heating - secondary	550.62	х	3.42	x 0.01 =	18.83	(242)
Water heating cost (other fuel)	2400.28	х	3.10	x 0.01 =	74.41	(247)
Pumps, fans and electric keep-hot	175.00	х	11.46	x 0.01 =	20.06	(249)
Energy for lighting	327.18	х	11.46	x 0.01 =	37.49	(250)
Additional standing charges (Table 12)					106.00	(251)
Total energy cost			(240)(242)) + (245)(254)	364.28	(255)
11a. SAP rating - Individual heating systems including micro-CHP						
Energy cost deflator (Table 12)					0.47	(256)
Energy cost factor (ECF)			[(255) x (256)]	÷ [(4) + 45.0] =	1.43	(257)
SAP value					80.03	
SAP rating					80	(258)
SAP band					С	
12a. Carbon dioxide emissions - Individual heating systems inclu	ding micro-CHP					
0-1	Energy		Emissions		Emissions	
	kWh/year		Factor		(kgCO2/year)	
Space heating - main system 1	3467.32	x	0.198	=	686.53	(261)
Space heating - secondary	550.62	x	0.008	=	4.40	(263)
Water heating	2400.28	x	0.198	=	475.25	(264)
Space and water heating			(261) + (262) +	(263) + (264) =	1166.19	(265)
Pumps, fans and electric keep-hot	175.00	x	0.517	=	90.48	(267)
Lighting	327.18	x	0.517	=	169.15	(268)
Total carbon dioxide emissions			:	∑(261)(271) =	1425.82	(272)
Dwelling carbon dioxide emissions rate				(272) ÷ (4) =	19.11	(273)
El value					84.03	
El rating (see section 14)					84	(274)
El band					В]
13a. Primary energy - Individual heating systems including micro	-CHP					
	Energy kWh/year		Primary Energy Factor		Primary Energy	

	Energy kWh/year		Primary Energy Factor		Primary Energy	
Space heating - main system 1	3467.32	x	1.02	=	3536.67	(261*)
Space heating - secondary	550.62	х	1.05	=	578.15	(263*)
Water heating	2400.28	x	1.02	=	2448.28	(264*)
Space and water heating		(26	61*) + (262*) + (2	263*) + (264*) =	6563.10	(265*)
Pumps, fans and electric keep-hot	175.00	x	2.92	=	511.00	(267*)
Lighting	327.18	х	2.92	=	955.37	(268*)
Total primary energy kWh/year			Σ(2	261*)(271*) =	8029.47	(272*)
Primary energy kWh/m2/year				(272*) ÷ (4) =	107.62	(273*)